Received 13 September 2002

Accepted 2 October 2002

Online 18 October 2002

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Angshuman Roy Choudhury,^a B. H. M. Mruthyunjayaswamy,^b Omkar B. Ijare,^b Y. Jadegoud^b and T. N. Guru Row^a*

^aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, and ^bDepartment of Chemistry, Gulbarga University, Gulbarga 585 106, India

Correspondence e-mail: ssctng@sscu.iisc.ernet.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.008 Å R factor = 0.066 wR factor = 0.191 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_5H_9N_3S$, which exhibits a hypoglycemic effect, crystallizes in space group $P2_1/c$. The structure is held together by a network of intermolecular $N-H\cdots N$ hydrogen bonds.

2-Amino-5-propyl-1,3,4-thiadiazole

Comment

The title compound, (I), is an intermediate for the synthesis of 2-toluenesulfonamido-5-propyl-1,3,4-thiadiazole, a compound investigated for its hypoglycemic effect related to its anti-bacterial properties (Matti *et al.*, 1959).

The thiadiazole ring (I) is planar and the propyl group makes an angle of 49.4 (6)° (torsion angle S1-C2-C3-C4) with the plane of the ring. The molecules are linked *via* two different hydrogen bonds, as given in Table 1. These form a hydrogen-bonded network, as shown in Fig. 2.

Experimental

A mixture of thiasemicarbazide (0.047 mol), butyric acid (0.068 mol) and concentrated sulfuric acid (0.05 mol) was refluxed under anhydrous conditions for 2 h. The reaction mixture was then decomposed by pouring it into ice water. The solution was neutralized with ammonia. The precipitate was collected by filtration and washed with water (Chubb & Nissenbaum, 1959). Yellow crystals (m.p. 476– 478 K) were grown from ethanol.

Crystal data C5H9N3S $D_x = 1.262 \text{ Mg m}^{-3}$ $M_r = 143.22$ Mo $K\alpha$ radiation Monoclinic, $P2_1/c$ Cell parameters from 1701 a = 10.181 (4) Åreflections b = 6.766 (2) Å $\theta = 3.5 - 24.2^{\circ}$ $\mu=0.35~\mathrm{mm}^{-1}$ c = 11.114 (4) Å $\beta = 100.02 \ (1)^{\circ}$ T = 293 (2) KV = 753.9 (5) Å³ Prism, yellow $0.35 \times 0.25 \times 0.20$ mm Z = 4

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved Figure 1

The molecular structure of (I), with ellipsoids at the 50% probability level.

organic papers

Data collection

Bruker SMART CCD area-detector	1108 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.031$
φ and ω scans	$\theta_{\rm max} = 26.4^{\circ}$
Absorption correction: none	$h = -12 \rightarrow 12$
5894 measured reflections	$k = -8 \rightarrow 8$
1534 independent reflections	$l = -13 \rightarrow 13$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1025P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.066$	+ 0.1974P]
$wR(F^2) = 0.191$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.048$
1534 reflections	$\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$
91 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bonding geometry (Å, °).

H-atom parameters constrained

D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
0.92 0.73	2.06 2.21	2.970 (5) 2.944 (4)	170 176
	0.92 0.73	0.92 2.06 0.73 2.21	0.92 2.06 2.970 (5) 0.73 2.21 2.944 (4)

Symmetry codes: (i) -x, 3 - y, 1 - z; (ii) x, $\frac{5}{2} - y$, $z - \frac{1}{2}$.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 1990).

We thank the Department of Science and Technology, India, for data collection on the CCD facility set up under the IRFA-DST program, and the Chairman, Department of Chemistry, Gulbarga University, for providing facilities to carry out the synthesis of the title compound.

Figure 2

Packing diagram of (I), viewed down the b axis. Hydrogen bonds are shown as dotted lines.

References

Bruker (1998). SMART, SAINT, XPREP and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Chubb, F. L. & Nissenbaum, J. (1959). Can. J. Chem. 37, 1121-1123.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Matti, J., Ledoux, C. & Kesler, M. E. (1959). Bull. Soc. Chim. Fr. pp. 477-479. Spek, A. L. (1990). Acta Cryst. A46, C-34.

Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.